1,533 research outputs found

    A stereospecific 2-keto-4-hydroxyglutarate aldolase from Escherichia coli

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/32931/1/0000313.pd

    59Co Nuclear Quadrupole Resonance Studies of Superconducting and Non-superconducting Bilayer Water Intercalated Sodium Cobalt Oxides NaxCoO2.yH2O

    Full text link
    We report 59Co nuclear quadrupole resonance (NQR) studies of bilayer water intercalated sodium cobalt oxides NaxCoO2.yH2O (BLH) with the superconducting transition temperatures, 2 K < T_c <= 4.6 K, as well as a magnetic BLH sample without superconductivity. We obtained a magnetic phase diagram of T_c and the magnetic ordering temperature T_M against the peak frequency nu_3 59Co NQR transition I_z = +- 5/2 +-7/2 and found a dome shape superconducting phase. The 59Co NQR spectrum of the non-superconducting BLH shows a broadening below T_M without the critical divergence of 1/T_1 and 1/T_2, suggesting an unconventional magnetic ordering. The degree of the enhancement of 1/T_1T at low temperatures increases with the increase of nu_3 though the optimal nu_3~12.30 MHz. In the NaxCoO2.yH2O system, the optimal-T_c superconductivity emerges close to the magnetic instability. T_c is suppressed near the phase boundary at nu_3~12.50 MHz, which is not a conventional magnetic quantum critical point.Comment: 4 pages, 5 figure

    Three Dimensional Relativistic Electromagnetic Sub-cycle Solitons

    Full text link
    Three dimensional (3D) relativistic electromagnetic sub-cycle solitons were observed in 3D Particle-in-Cell simulations of an intense short laser pulse propagation in an underdense plasma. Their structure resembles that of an oscillating electric dipole with a poloidal electric field and a toroidal magnetic field that oscillate in-phase with the electron density with frequency below the Langmuir frequency. On the ion time scale the soliton undergoes a Coulomb explosion of its core, resulting in ion acceleration, and then evolves into a slowly expanding quasi-neutral cavity.Comment: 5 pages, 6 figures; http://www.ile.osaka-u.ac.jp/research/TSI/Timur/soliton/index.htm

    Electronic structure of the strongly hybridized ferromagnet CeFe2

    Full text link
    We report on results from high-energy spectroscopic measurements on CeFe2, a system of particular interest due to its anomalous ferromagnetism with an unusually low Curie temperature and small magnetization compared to the other rare earth-iron Laves phase compounds. Our experimental results indicate very strong hybridization of the Ce 4f states with the delocalized band states, mainly the Fe 3d states. In the interpretation and analysis of our measured spectra, we have made use of two different theoretical approaches: The first one is based on the Anderson impurity model, with surface contributions explicitly taken into account. The second method consists of band-structure calculations for bulk CeFe2. The analysis based on the Anderson impurity model gives calculated spectra in good agreement with the whole range of measured spectra, and reveals that the Ce 4f -- Fe 3d hybridization is considerably reduced at the surface, resulting in even stronger hybridization in the bulk than previously thought. The band-structure calculations are ab initio full-potential linear muffin-tin orbital calculations within the local-spin-density approximation of the density functional. The Ce 4f electrons were treated as itinerant band electrons. Interestingly, the Ce 4f partial density of states obtained from the band-structure calculations also agree well with the experimental spectra concerning both the 4f peak position and the 4f bandwidth, if the surface effects are properly taken into account. In addition, results, notably the partial spin magnetic moments, from the band-structure calculations are discussed in some detail and compared to experimental findings and earlier calculations.Comment: 10 pages, 8 figures, to appear in Phys. Rev. B in December 200

    Global well-posedness of the Kirchhoff equation and Kirchhoff systems

    Get PDF
    This article is devoted to review the known results on global well-posedness for the Cauchy problem to the Kirchhoff equation and Kirchhoff systems with small data. Similar results will be obtained for the initial-boundary value problems in exterior domains with compact boundary. Also, the known results on large data problems will be reviewed together with open problems.Comment: arXiv admin note: text overlap with arXiv:1211.300

    Ancient DNA reveals multiple origins and migration waves of extinct Japanese brown bear lineages.

    Get PDF
    Little is known about how mammalian biogeography on islands was affected by sea-level fluctuations. In the Japanese Archipelago, brown bears (Ursus arctos) currently inhabit only Hokkaido, the northern island, but Pleistocene fossils indicate a past distribution throughout Honshu, Japan's largest island. However, the difficulty of recovering ancient DNA from fossils in temperate East Asia has limited our understanding of their evolutionary history. Here, we analysed mitochondrial DNA from a 32 500-year-old brown bear fossil from Honshu. Our results show that this individual belonged to a previously unknown lineage that split approximately 160 Ka from its sister lineage, the southern Hokkaido clade. This divergence time and fossil record suggest that brown bears migrated from the Eurasian continent to Honshu at least twice; the first population was an early-diverging lineage (greater than 340 Ka), and the second migrated via Hokkaido after approximately 160 Ka, during the ice age. Thus, glacial-age sea-level falls might have facilitated migrations of large mammals more frequently than previously thought, which may have had a substantial impact on ecosystem dynamics in these isolated islands

    Splitting of the Dipole and Spin-Dipole Resonances

    Full text link
    Cross sections for the 90,92,94Zr(p,n) reactions were measured at energies of 79.2 and 119.4 MeV. A phenomenological model was developed to describe the variation with bombarding energy of the position of the L=1 peak observed in these and other (p,n) reactions. The model yields the splitting between the giant dipole and giant spin dipole resonances. Values of these splittings are obtained for isotopes of Zr and Sn and for 208Pb.Comment: 14 pages, 4 figure

    Ground and excited state communication within a ruthenium containing benzimidazole metallopolymer

    Get PDF
    Emission spectroscopy and electrochemistry has been used to probe the electronic communication between adjacent metal centres and the conjugated backbone within a family of imidazole based metallopolymer, [Ru(bpy)2(PPyBBIM)n]2+, in the ground and excited states, bpy is 2,2’-bipyridyl, PPyBBIM is poly[2-(2-pyridyl)-bibenzimidazole] and n = 3, 10 or 20. Electronic communication in the excited state is not efficient and upon optical excitation dual emission is observed, i.e., both the polymer backbone and the metal centres emit. Coupling the ruthenium moiety to the imidazole backbone results in a red shift of approximately 50 nm in the emission spectrum. Luminescent lifetimes of up to 120 ns were also recorded. Cyclic voltammetry was also utilized to illustrate the distance dependence of the electron hopping rates between adjacent metal centres with ground state communication reduced by up to an order of magnitude compared to previously reported results when the metal to backbone ratio was not altered. DCT and De values of up to 3.96 x 10-10 and 5.32 x 10-10 cm2S-1 were observed with corresponding conductivity values of up to 2.34 x 10-8 Scm-1

    Nuclear Spin-Lattice Relaxation in One-Dimensional Heisenberg Ferrimagnets: Three-Magnon versus Raman Processes

    Full text link
    Nuclear spin-lattice relaxation in one-dimensional Heisenberg ferrimagnets is studied by means of a modified spin-wave theory. We consider the second-order process, where a nuclear spin flip induces virtual spin waves which are then scattered thermally via the four-magnon exchange interaction, as well as the first-order process, where a nuclear spin directly interacts with spin waves via the hyperfine interaction. We point out a possibility of the three-magnon relaxation process predominating over the Raman one and suggest model experiments.Comment: to be published in J. Phys. Soc. Jpn. 73, No. 6 (2004
    • …
    corecore